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Mirror neurons are a class of neurons that become
active both when individuals perform a specific motor
act and when they observe a similar act done by oth-
ers. In primates, mirror neurons have been found in
the premotor cortex and in the inferior parietal lobule
(22, 20, 51). Recently, mirror neurons also have been
described in the forebrain of birds (48). 

The essence of the mirror neuron mechanism is the
transformation of specific sensory information into a
motor format. This mechanism can be demonstrated,
besides recording single neurons, by using transcra-
nial magnetic stimulation (TMS), EEG, MEG, and
brain imaging technique (PET, fMRI). Evidence of the
existence of mirror mechanism in humans is based on
these techniques. 

The functions mediated by the mirror mechanism
vary according to its location in the brain networks.
Among the networks endowed with a mirror mecha-
nism (mirror systems), the most studied is the one
formed by the inferior parietal lobule and the ventral
premotor cortex. This network transforms sensory
representations of observed or heard motor acts into
motor representations of the same acts. Its function
is to give an immediate, not cognitively mediated,
understanding of the observed motor behavior. A
mirror mechanism is also present in the insula and
rostral cingulate (16, 23). This mechanism trans-
forms observed emotional situations into viscero-
motor responses analogous to those that are present
when an individual actually experiences those emo-
tions. This emotional mirror system gives the
observer a direct feeling of what others feel. Other
networks containing a mirror mechanism are
involved in coding intransitive movements and in
transforming heard phonemes in motor acts able to
generate them. 

In this review, we will examine first the mirror
mechanism involved in action and intention under-
standing. We will review then mirror system involved
in coding non-object-directed movements (i.e.,
intransitive movements) and verbal material. We will
conclude with discussing mirroring and emotion. 

Mirror Neurons and Action
Understanding

The parieto-frontal mirror system in 
the monkey

Mirror neurons have been first discovered in a sector
of the ventral premotor cortex (area F5) of the monkey
(22, 51). Subsequently, they have been also found in
the inferior parietal lobule (20). The defining charac-
teristics of parietal and premotor mirror neurons is the
close relationship they show between the motor acts
they code and the visual motor acts they respond to
(FIGURE 1). Using as classification criterion the con-
gruence between the executed and observed motor
acts effective in triggering them, the mirror neurons
have been subdivided into two main classes: strictly
congruent and broadly congruent mirror neurons.
Strictly congruent mirror neurons discharge when the
observed and executed effective motor acts are identi-
cal both in terms of goal (e.g., grasping) and in terms of
the way in which that goal is achieved (e.g., precision
grip), whereas broadly congruent mirror neurons
require, to be triggered, similarity but not identity
between the observed and executed effective motor
acts (22). 

FIGURE 2 shows the cytoarchitectonic organization
of the parietal and agranular frontal cortices of the
monkey. Area F5 represents its frontal node (53). This
area is not homogeneous. Cytoarchitectonically, it
consists of three sectors: a sector lying on the cortical
convexity (F5c), a sector located on the dorsal part of
the posterior bank of the arcuate sulcus (F5p), and a
sector located on the ventral part of the same bank
(F5a) (38) (FIGURE 2, LEFT INSET). 

Mirror neurons are located mostly in F5c. In F5p, a
different type of visuo-motoneurons have been
described. These neurons, called “canonical neurons,”
respond to the presentation of 3D objects but do not
require an action on them to be activated (38). 

There are no single neuron data on the functional
properties of F5a. A recent fMRI study revealed, how-
ever, an interesting functional difference between this
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performed by living individuals (32, 46). STS, however,
should not be properly considered as a part of the mir-
ror neuron system because its neurons do not dis-
charge in association with motor activity. 

Before examining what might be the functional role
of the mirror neurons, it is important to define some
terms at the basis of motor organization: movement,
motor act, and action. Movement indicates a mere dis-
placement of a body part. It does not include the idea
of goal. Motor act defines a series of movements per-
formed to reach a goal (e.g., grasping an object).
Finally, motor action is a series of motor acts (e.g.,
reaching, grasping, bringing to the mouth) that allows
individuals to fulfill their intention (e.g., eating). 

The most widely accepted hypothesis on the func-
tional role of the parieto-frontal mirror circuit is that it
plays a role in understanding the goal of motor acts,
which is what an individual is doing in a given moment
(e.g., grasping, holding, tearing) (52). To test this
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area, on one side, and F5c on the other. This study
showed that, although to be activated F5c requires an
“embodied” situation, which is the vision of the agent
performing the motor act, the more rostral F5a codes
motor acts in a more abstract way, becoming active
even when the acting hand only is visible (41). 

How does visual information reach area F5?
Recently, an experiment in which fMRI data were
combined with anatomical tracing techniques showed
that there are two main anatomical and functional
streams that, via inferior parietal lobule, connect area
F5 with the higher order visual areas of the superior
temporal sulcus (STS). The first stream originates from
a sector of the upper bank of the STS (“STPm”), reach-
es parietal area PFG, and terminates in area F5c. The
second stream arises in the lower bank of the STS,
reaches parietal area AIP, and then area F5a (3, 42).
Studies of Perrett and coworkers showed that neurons
of STS region respond to the observation of motor acts

REVIEWS

FIGURE 1. Example of a F5 mirror neuron
The neuron discharges during observation of a grasping movement done by the experimenter (A) and during monkey
grasping movements (B). 
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hypothesis, two series of experiments were carried out.
In the first, the authors tested whether mirror neurons
could recognize actions from their sounds. It was found
that many mirror neurons that responded to visual
observation of motor acts accompanied by sounds also
responded to the sound alone. These neurons were
named “audio-visual” mirror neurons (33). In the sec-
ond series of experiments, after selecting mirror neu-
rons that responded exclusively during the observation
of the late phase of grasping and/or during object hold-
ing, these neurons were tested in two conditions. In
one, the monkey saw the hand of the experimenter
grasping and holding an object (“full vision” condi-
tion); in the other, the monkey saw only the experi-
menter’s hand moving toward a screen but not the final
critical part of the motor act, i.e., the hand object inter-
action (“hidden” condition). The results showed that
more than half of the F5 mirror neurons discharged in
the hidden condition. This shows that when the 
monkey has sufficient clues to create a mental repre-
sentation of the observed motor act, mirror neurons
describe it even if the motor act is not visible (63). 

Taken together, these experiments strongly support
the notion that the activity of mirror neurons under-
pins the understanding of motor acts. This is regard-
less of whether this comprehension is based on vision,
sound, or mental representation. 

Although single mirror neurons code the motor act
that is going on in front of the observer, there is recent
evidence that, thanks to the functional organization of
the parietal and premotor mirror neurons, the observ-
er is also able to understand why that motor act is
done, in other terms, the goal of the action of which
motor act is part. 

This evidence has been reached in one experiment
in which monkeys were trained to perform two actions
with different goals (20). In the first, the monkey had to
grasp an object to place it into a container; in the sec-
ond, it had to grasp a piece of food to eat it. The initial
motor acts, reaching and grasping, were identical in
the two conditions, whereas the final goal of the two
actions was different. The activity of single neurons
was recorded from the inferior parietal lobule (IPL).
The results showed that many IPL neurons discharge
selectively when the monkey executes a given motor
act (e.g., grasping). Very interestingly, most of them
fire only when the coded motor act was followed by a
subsequent specific motor act (e.g., placing). 

Some of these action-constrained motoneurons
had mirror properties and selectively discharged
during the observation of motor acts when these
were embedded in a given action (e.g., grasping for
eating but not grasping for placing) (20). Thus the
activation of IPL action-constrained mirror neurons
coded not only grasping but grasping for eating or
grasping for placing. This specificity can allow the
observer not only to recognize the observed motor
act but also to code what will be the next motor act of

the not-yet-observed action: i.e., to understand the
intentions behind the action’s agent. 

Mirror system in humans

The human parieto-frontal mirror system mediates
the same functions that are mediated by the homolo-
gous mirror system in the monkey: understanding the
goal of actions done by others and the intentions
behind them. 

As shown by many brain imaging studies, the two
main nodes of human mirror system are the inferior
parietal lobule (IPL) and the ventral premotor cortex
(PMv) plus the caudal part of the inferior frontal gyrus
(IFG). This part roughly corresponds to the pars oper-
cularis of this gyrus. The localization of human pari-
eto-frontal mirror system is shown in FIGURE 3. As
one can see, it closely corresponds to that of the
homologous mirror neuron system of the monkey. 

The premotor node of mirror system is somatotopi-
cally organized (4). Observation of motor acts done
with different effectors determines activation of specif-
ic parts of it. Leg, hand, and mouth movements are 
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FIGURE 2. Mesial and lateral views of the macaque brain
The central part of the figure shows the cytoarchitectonic parcellation of the frontal
motor cortex (areas indicated with F and Arabic numbers) and of the parietal lobe
(areas indicated with P and progressive letters). The enlargement of the frontal region
(rectangle on the left) shows the parcellation of F5. The rectangle on the right shows
the areas buried within the intraparietal sulcus. AIP, anterior intraparietal area; IP, intra-
parietal sulcus; LIP, lateral intraparietal area; MIP, medial intraparietal area; POs, pari-
eto-occipital sulcus; As, superior arcuate sulcus; Ai inferior arcuate sulcus; C, central sul-
cus; Ca, calcarine fissure; CG, cingulate cortex; FEF, frontal eye field; L, lateral sulcus;
Lu, lunate sulcus; P, principal sulcus; STS, superior temporal sulcus. 
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Motor acts that are richly represented in the observ-
er’s motor repertoire determine a strong activation of
the mirror system. This has been shown by a series of
brain imaging studies that examined the mirror activa-
tions in persons expert in specific motor skills and
comparing them with the activations determined by
the same stimuli in individuals having different motor
experience. The results showed that the observed
actions are mapped onto the observers’ corresponding
motor programs and that the activation is stronger in
individuals expert in performing them (8, 9, 12). 

An issue that has been recently addressed is how the
mirror system would respond to the observation of
hand actions if the observer never had hands or arms
(25). Two aplasic individuals, born without arms and
hands, were scanned while they observed hand
actions. The results showed activations in the parieto-
frontal circuit while they were watching hand actions.
This finding demonstrates the brain mirrors actions
that deviate from normal motor organization by
recruiting motor representations involved in the exe-
cution of actions that achieve corresponding goals
using different effectors. 

Convincing evidence has been recently achieved that,
as in the monkey, the human mirror system also is
involved in understanding not only the goal of the
observed motor acts but also the intention behind them. 

The first evidence in this sense has been provided
by an fMRI study in which volunteers had to infer the
agents’ intention by observing them performing a
motor act (30). In the study, there were three condi-
tions. In the first condition (context), the volunteers
saw some objects arranged as if a person was ready to
drink the tea or had just finished the breakfast; in the
second condition (action), the volunteers were shown
a hand that grasped a mug without any context; in the
third condition (intention), the volunteers saw the
same hand action but within the two breakfast con-
texts. The contexts suggested the intention of the
agent, i.e., grasping the cup for drinking or grasping it
for cleaning the table. 

The results showed that, in both action and inten-
tion conditions, there was an activation of the mirror
system. Crucial was the comparison between inten-
tion and action conditions. This comparison showed
that the understanding of the intention of the doer
determines a significant increase in activity of the mir-
ror system. 

In conclusion, these data show that the intentions
behind the actions of others can be recognized by the
mirror mechanism. This does not exlude, of course,
that other more cognitive ways of “reading minds” do
exist (21). However, the mirror mechanism is most
likely the most basic neural mechanism for a motor
(experiential) understanding intentionality. 

More recently, an fMRI study investigated the neural
basis of human capacity to differentiate between
actions reflecting the intention of the agent (intended
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represented in a medial to lateral direction, as in the
classical homunculus of Penfield and Woolsey (44, 68). 

To shed light on the organization of cortical areas
forming the action observation circuit, a study was
recently carried out using four motor acts performed
with the mouth, the hand, and the foot (31). In agree-
ment with previous studies (43, 55, 65), the results
showed that the ventral premotor cortex clusters
together motor acts performed by the same effector,
regardless of their positive (directed toward the agent)
or negative (directed away from the agent) valence. In
contrast, the parietal mirror node appears to follow
another organization principle. Here, the various
observed motor acts are coded not according to the
effector performing them but according to the
valence of the observed motor act. Positive motor acts
activate ventral sectors of the responsive region
(mostly phAIP), whereas negative acts activate dorsal
sectors of the same area and the adjacent dorso-ros-
tral cortex (31). 

REVIEWS

FIGURE 3. Later view of human cortex with an
enlarged view the frontal lobe
Cytoarchitectonic subdivision according to Brodmann.
The areas in yellow show areas responding to the obser-
vation and execution of hand motor acts. Top: enlarged
view of the frontal lobe. The possible homology
between monkey and human premotor cortex are indi-
cated. C, central sulcus; IF, inferior frontal sulcus; FEF,
frontal eye field; PMd, dorsal premotor cortex; PMv, ven-
tral premotor cortex; PrePMd, predorsal premotor cor-
tex; SP, upper part of the superior precentral sulcus. For
areas indicated with F, see FIGURE 2. 
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actions) and actions that did not reflect it (non-intend-
ed actions). Volunteers were presented with video clips
showing a large number of actions done with different
effectors, each in a double version: one in which the
actor achieved the purpose of his or her action (e.g.,
pour the wine), the other in which the actor performed
a similar action but failed to reach the goal of it because
of a motor slip or a clumsy movement (e.g., spill the
wine) The results showed that the observation of both
types of actions activated a common set of areas
including the inferior parietal lobule, the lateral pre-
motor cortex, and mesial premotor areas. The contrast
of non-intended vs. intended actions showed activa-
tion in the right temporo-parietal junction, left supra-
marginal gyrus, and mesial prefrontal cortex. The 
converse contrast did not show any activation. The
authors concluded that the capacity to recognize non-
intended actions is based on the activation of areas sig-
naling unexpected events in spatial and temporal
domains, in addition to the activity of the mirror sys-
tem (6). The interpretation of the right temporo-pari-
etal junction activation as an attentional mechanism is
in line with introspection that a non-intended action
does not produce attempts to attribute an intention to
the agent as well as with recent data stressing the role
of this region in attentional processes (40). 

Intransitive Actions and Imitation

The mirror system that we described so far is involved
in action and intention understanding. From the very
beginning of the studies of mirror neurons system, it
was clear, however, that in humans motor system also
“resonate” in response to intransitive movements,
including those without any obvious meaning.
Evidence for this came mostly from TMS studies (e.g.,
Refs. 17, 24, 61). 

Fadiga et al. (17) asked volunteers to observe an
experimenter grasping objects or performing mean-
ingless arm gestures. As control, the detection of the
dimming of a small spot of light was used. The results
showed that observation of both transitive and 
intransitive actions produced an increase in the
motor-evoked potentials (MEPs) recorded from the
observer’s hand and arm muscles. The increase was
found in those muscles that the participants would
use to produce the movement observed. These find-
ings were confirmed by other experiments in which
proximal and distal movements were studied (see
Ref. 50). 

The existence of an intransitive movements mirror
system is very relevant for understanding the neural
basis of imitation. The term imitation has many defini-
tions. There are, however, two main senses in which it
is most commonly used. The first defines imitation as
the capacity of an individual to replicate an observed
motor act (49); the second defines imitation as the
capacity to acquire, by observation, a new motor

behavior and to repeat it using the same movements
employed by the teacher (62). In both cases, imitation
requires the capacity to transform sensory informa-
tion into a motor copy of it, including the capacity to
imitate intransitive movements. 

Several experiments provide evidence that mirror
mechanism is involved in imitation as an immediate
replica of the observed motor act. Iacoboni et al. (29)
tested volunteers in two main conditions: “observa-
tion” and “observation execution.” In the observation
condition, participants were shown a moving finger,
a cross on a stationary finger, or a cross on empty
background. The instruction was to observe the stim-
uli. In the observation execution condition, the same
stimuli were presented, but this time the instruction
was to lift the right finger, as fast as possible, in
response to them. The crucial contrast between the
trials was in which the volunteers made the move-
ment in response to an observed action (imitation)
and in which the movement was triggered by the
cross (a non-imitative behavior). The results showed
that the activation of the mirror system and in partic-
ular of the posterior part of IFG was stronger during
imitation. 

Further evidence that the mirror system plays a fun-
damental role in this type of imitation was provided by
repetitive TMS (rTMS), a technique that provokes a
transient depression of the stimulated region. In a
group of volunteers, Heiser et al. (27) stimulated the
caudal part of the left frontal gyrus (Broca’s area) while
they 1) pressed keys on a keyboard, 2) pressed the keys
in response to a point of red light indicating which key
to press, 3) imitated a key-pressing movement done by
another individual. The data showed that rTMS low-
ered the participants’ performance during imitation
but not during the other two tasks. 

More complex appears to be mechanisms involved
in imitation learning. In this case imitation appears to
result form the interaction of two distinct processes: 1)
segmentations of the action to be imitated into its indi-
vidual elements and their transformation into the cor-
responding potential movements and motor acts of
the observer; 2) organization of these potential move-
ments and motor acts into a temporal and spatial 
pattern that replicates that shown by the demonstrator
(7). There is evidence that the first step is carried out
by the mirror system, whereas the second step is most-
ly due to the activity of the prefrontal lobe and in 
particular of area 46 that memorizes and recombines
the motor elements in the new pattern (5, 64). 
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observed intransitive movements into potential move-
ments, there is a further system transforming heard
phonemes in the corresponding motor representation
of the same sound. There is no doubt that this system
could play a fundamental role in language learning. It
is matter of debate at what extent it intervenes in the
comprehension of word meaning. 

Mirror Neuron System and Emotion

There is no general agreement on what are the primal
emotions. Some people narrow down emotions to
five basic categories: love, happiness, anger, sadness,
and fear. According to Darwin, another basic emo-
tion is disgust (15), being that it is present in all
human beings regardless of their race, gender, and
social class. 

Disgust is one of the emotions most investigated in
neurophysiological studies. Brain imaging studies
showed that when an individual is exposed to disgust-
ing odors or tastes, there is an intense activation of two
structures: the amygdala and the insula (2, 54, 56, 67). 

The insula is a complex structure. It is formed by
two major functional sectors: an anterior sector com-
prising the agranular and anterior disgranular insula
and a posterior sector comprising the posterior dis-
granular and the granular insula. Its anterior sector
receives a rich input from olfactory and gustatory cen-
ters and appears to control visceral and autonomic
responses. Additionally, it receives visual information
from the STS region (39). The posterior sector of the
insula is characterized by connections with auditory,
somatosensory, and premotor areas. From these data,
it is clear that the insula is not exclusively a sensory
area. Furthermore, in both monkeys and humans, its
electrical stimulation may produce body movements
typically accompanied by autonomic and viscero-
motor responses (34, 45, 57). 

On the basis of brain-imaging studies (47, 56, 59, 60,
69) showing that, in humans, the observation of faces
showing disgust activates the anterior insula, Wicker
et al. (67) investigated in an fMRI study whether the
insula sites that show activation during the experience
of disgust also show activation during the observation
of faces expressing disgust. 

The study consisted of two sessions. In the first, the
participants were exposed to unpleasant and pleasant
odorants; in the second, they watched a video showing
the face expression of people sniffing an unpleasant, a
pleasant, or a neutral odor. Three main structures
became active during the exposure to smells: the
amygdala, the insula, and the anterior cingulate. The
amygdala was activated by both unpleasant and pleas-
ant odors. In the insula, pleasant odorants produced a
relatively weak activation located in a posterior part of
the right insula, whereas disgusting odorants activated
the anterior sector bilaterally. The results of visual
runs showed activations in various cortical and 
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Mirror Neurons and Speech

Although there is strong disagreement on whether
human speech has its evolutionary roots in gestures or
animals calls, nobody denies that speech is something
more than a mere collection of curious sounds. This
was clearly demonstrated by Liberman and colleagues
(35, 36, 37) who showed that one cannot build an effi-
cient communication system by simply using tone
combinations. According to them, the unique proper-
ty of speech is due to the capacity of speech sound to
elicit the motor representation of the heard sound in
the listener. There is evidence that this capacity has a
precise neural correlate. 

In a TMS experiment, Fadiga et al. (18) stimulated
the left hemisphere speech motor centers and record-
ed MEPs from the tongue muscles in volunteers
instructed to listen carefully to acoustically presented
verbal and non-verbal material. The stimuli were
words and bitonal sounds. In the middle of words,
there was either a double “f” or a double “r.” “F” is a
consonant that, when pronounced, requires virtually
no tongue movements, whereas “r” is a consonant that,
in contrast, requires marked tongue muscle involve-
ment to be pronounced. The results showed that lis-
tening to words containing the double “r” produced a
significant increase of MEPs amplitude recorded from
tongue muscles compared with listening to bitonal
sounds and words containing the double “f.” 

Similar results were obtained by Watkins et al. (66).
Using TMS technique, they recorded MEPs from a lip
muscle and a hand muscle in four conditions: listen-
ing to continuous prose, viewing speech-related lip
movements, listening to non-verbal sounds, and view-
ing eye and brow movements. Compared with viewing
eye and brow movements, listening to and viewing
speech enhanced the amplitude of MEPs recorded
from the lip muscles. All of these effects were seen only
in response to stimulation of the left hemisphere. 

Taken together, these data indicate that, in humans,
in addition to the mirror system transforming

REVIEWS

FIGURE 4. Activations found when pain was applied to self or to 
the partner
A and B:  the results of a conjunction analysis between the contrasts of pain and no
pain in the context of self and other. Results are shown on sagittal (A) and coronal (B)
sections of the mean structural scan. Coordinates refer to peak activations. Increased
pain-related activation was observed in the anterior cingulate (ACC), anterior insula,
cerebellum, and brain stem (from Ref. 58). 
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subcortical centers but not in the amygdala. The left
anterior insula and the anterior cingulate were activat-
ed only during the observation of disgust. 

The most important result of the study was the
demonstration that precisely the same foci within the
anterior insula that were activated by the exposure to
disgusting odorants were also activated by the observa-
tion of disgust. This finding strongly suggests that the
insula and the anterior cingulate contain neural popu-
lations that becomes active both when the participants
experience disgust and when they see it in others. 

Because there are no data on single neuron proper-
ties of insula neurons during observation and feeling
of disgust, it is possible to postulate that, instead of
containing neurons endowed with a mirror mecha-
nism, the insula and cingulate sites commonly activat-
ed by feeling and observing disgusting facial 
expressions contain two neuronal populations, one
responding to the observation of emotional stimuli
and the other active firing in association to the viscero-
motor expression of the same emotions. It is rather
unlike, however, the mechanism for understanding
how “hot” actions are radically different from “cold”
actions, and the fact that the two putative populations
of the insula and the anterior cingulate do not interact.
Furthermore, at least for the cingulate cortex, there is
evidence, although limited to one neuron, of a mirror
mechanism identical to that described for the monkey
parietal and premotor cortex (28). 

In addition to disgust, activations in the anterior
insula and in the anterior cingulate cortex were also
obtained in studies in which emotional reactions to
pain were investigated using an event-related fMRI
paradigm (Ref. 58; see also Ref. 16). In this study, there
were two conditions. In one, the participants were
subjected to a mildly painful electric shock from elec-
trodes placed on their hand; in the second, they were
asked to watch while the same electrodes were posi-
tioned to the hand of a loved one. They were told that
the loved person would receive the same shock to
which they had been subjected earlier. The results
showed that the same sites of the anterior insula and
of the cingulate cortex became active in both condi-
tions. This results show that both direct pain experi-
ence and its evocation are mediated by a mirroring
similar to that found for disgust (FIGURE 4). 

The hypothesis that emotions of others are recog-
nized through an activation of those structures that
mediate the feeling of that emotion in ourselves has
been advanced by various authors (10, 11, 13, 23, 26).
Particularly influential in this respect have been the
studies by Damasio and his coworkers. According to
these studies, mostly based on brain lesions, the neu-
ral basis of emotion understanding is the activation of
an “as-if loop,” the core structure of which is the insula
(1, 14). These authors attributed, at least in their initial
studies, a role in the “as-if loop” also to somatosenso-
ry areas like SI and SII, conceiving the basis of experi-

ential emotion recognition to be in the activation in
the observer of those cortical areas where the body is
represented. Although a sensory contribution to emo-
tion understanding is certainly possible, the activation
of the rostral insula and, in contrast, the lack of the
activation in the primary somatosensory cortices in
emotion feeling strongly suggest a non-sensorial basis
for emotion recognition. 

Finally, it should be stressed that, although the
notion that the activation of viscero-motor structures
provides the basis for the recognition of emotion, it
does not exclude that emotions may be also recog-
nized indirectly using cognition. Some particular 
visual features representing the basic features of an
emotion, like in schematic faces, allows emotion
recognition. This emotion recognition is, however,
radically different from that mediated by the insula
and the anterior cingulate, with only the latter creating
a shared feeling between the observer and the person
actually feeling the emotion. 

Conclusions
The direct transformation of sensory information into
a motor format (mirror mechanism) plays an impor-
tant role in many cognitive functions ranging from
understanding motor acts to understanding inten-
tions, and from experiencing others’ emotions to imi-
tation and speech. This variety of functions in which
mirroring is involved sometimes elicits surprise, prob-
ably because many have in mind only the properties of
mirror neurons of area F5. These neurons, however,
are only a type of neurons endowed with mirror prop-
erties. In these last few years, a large body of evidence
accumulated that shows that mirror mechanism is
also present in other cortical areas and that, according
to the anatomical network where it is located, mirror
mechanism may mediate a variety of cognitive func-
tions. Thus, besides the parieto-frontal mirror system
involved in action and intention understanding, there
are other mirror systems involved in copying intransi-
tive movements, in transforming phonemes into the
motor pattern for phonemes production, and in emo-
tion recognition. It likely that this list of mirror systems
is by no means exhaustive and that future research will
discover other networks endowed with the mirror
mechanism. 
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