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1.1 The Evolution of the Concept of Mental Illness

Alienists used to treat mental illness and those afflicted were considered “alienated”
or strange. There have been essentially two lines of thought concerning the causes
of mental illness: alien and endogenous. The alien causes may be a possession of the
gods or the devil, or, more recently, microorganisms such as bacteria and virus. The
endogenous causes may be an imbalance of the body fluids – the Hippocratic blood,
phlegm, yellow bile, and black bile (thence the term, melancholia) or the modern
version of an imbalance among serotonin, norepinephrine, and dopamine. It is also
generally accepted that severe environmental factors such as extreme heat or cold
can cause mental aberrations such as delirium.

Certain types of mental dysfunction, such as maladaptive patterns of behavior
and neurosis, have been also attributed to faulty learning or bad modeling.
Experimental “neuroses” and “learned helplessness” have been produced in animals
by confusing rewards or inescapable punishment (Saunders et al., 1995; Seligman,
1972).

Mental illness is known to run in families. With the advent of biological psychi-
atry, it was hoped, in the latter part of the twentieth century, that the etiologic genes
of mental illness would be discovered. In fact, the diagnostic and statistical manual
for mental illness adopted by the American Psychiatric Association in 1980 (DSM
III) was based on the research diagnostic criteria (Feighner et al., 1972) that were
designed to isolate “pure cultures” of psychiatric illness for biological research.
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At the time DSM III was introduced, the catecholamine theory of affective
disorders (Schildkraut, 1965) was the prevailing theory of mood disorders, chlorpro-
mazine the most commonly used antipsychotic, and the Human Genome Project was
yet not even a gleam in anyone’s eyes. Exciting developments have since occurred
in molecular biology and genetics and the Human Genome Project has been com-
pleted ahead of schedule (2003). Psychiatric research, at least in part fostered by the
rigorous diagnostic criteria of DSM III and its slight modification, DSM IV (1994),
has made breathtaking advances, taking full advantage of these and other develop-
ments during the Decade of the Brain, including neuroimaging techniques. On the
strength of these developments, a new theoretical model of psychiatric illness has
emerged that is open and evidence based.

Many putative genes that code for vulnerability for psychiatric syndromes are
evolutionarily conserved. This explains why schizophrenia which is associated with
low fertility rates in the afflicted has not become extinct. Crow (1997a, b, 2000,
2007) and Mitchell and Crow (2005) postulate that vulnerability to schizophrenia
may be the price that Homo sapiens had to pay for the development of language,
i.e., the speciation of humans from their ancestral apes involves the same genes that
caused the left hemispheric dominance and language. Crow proposes that there are
gradations in the genetic predisposition to psychosis, across diagnostic categories of
schizophrenia and bipolar disorder.

Certain genes that endow vulnerability to anxiety, for example, the short allele of
the serotonin transporter promoter gene (more of this below), may confer sensitivity
to the “smoke detector” of anxiety activation (Nesse, 2001) and be evolutionarily
adaptive when humans dwelled in caves in fear of predator animals. In the modern
world, however, such sensitivity to anxiety would be dysfunctional for the individual
and thus be considered a psychiatric syndrome.

1.2 Gene-Environment Interaction and Brain Morphology
and Function

The genes coding for predisposition to various psychiatric syndromes are currently
being defined using various techniques including linkage studies and genome scan.
As far as psychiatric diagnosis goes, current state of affairs can be summarized as
follows: For each diagnostic category, there are many susceptibility genes, and a sin-
gle gene or a few genes may code for the susceptibility for many different disorders.
On the basis of genetic studies, Kendler et al. (1998) proposed that psychosis be
reclassified as: (1) classic schizophrenia, (2) major depression, (3) schizophreniform
disorder, (4) bipolar-schizomania, (5) schizodepression, and (6) hebephrenia.

What seems clear is that psychiatric disorders are syndromes, phenomenological
convergence of a number of different genetic-pathophysiologic pathways. An anal-
ogy might be hypertension. Hypertension is a syndrome that has definable signs and
complications that can be treated with “antihypertensive” drugs. Hypertension, how-
ever, is pathophysiologically heterogeneous – it may be nephrogenic, cardiogenic,
neurogenic, endocrine, secondary to familial hyperlipidemia, stress-induced, etc.
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1.3 Gene–Environment Interaction: Serotonin Transporter Gene
as an Exemplar

A single gene that codes for the vulnerability to multiple psychiatric (and medical)
conditions is the serotonin transporter gene (SERT) and its promoter region poly-
morphism (5-HTTLPR). SERT is highly evolutionarily conserved and regulates the
entire serotoninergic system and its receptors via modulation of extracellular fluid
serotonin concentrations. DNA screens of patients with autism, ADHD, bipolar dis-
order, and Tourette’s syndrome have detected signals in the chromosome 17q region
where SERT is located (Murphy et al., 2004). 5-HTTLPR polymorphism consists
of short (s) and long (l) alleles, and the presence of the short allele tends to reduce
the effectiveness and efficiency of SERT. The short allele has been identified as
the underlying variation for the risk for the above disorders as well as anxiety,
increased neuroticism scales, smoking oticism, smoking behavior, negative mood,
social behavior, especially to reduce negative mood and feel stimulated, difficulty in
quitting smoking, social phobia, major depression, and irritable bowel syndrome
(Hu et al., 2000; Lerman et al., 2000; Lotrich and Pollock, 2004; Yeo et al.,
2004).

Why does a single gene code for so many vulnerabilities? One simple answer
may be that the gene codes for one or more basic evolutionarily adaptive predis-
positions that, in combination with other factors, may determine the development
and severity of a psychiatric syndrome. When we look at the list of vulnerabilities
above, it seems clear that there is a continuum, from anxiety to adaptive/maladaptive
behavior to phobia to major depression, and/or to physical symptoms. The concept
of endophenotype is useful in understanding traits associated with syndromes (e.g.,
eye-tracking abnormality in schizophrenics and relatives) (Gottesman and Gould,
2003) and might provide clues to a genotypic diagnosis.

Pezawas et al. (2005) showed that the short allele carriers show reduced gray
matter in limbic regions critical for processing of negative emotion, particularly
perigenual cingulate and amygdala. Functional MRI studies of fearful stimuli show
a tightly coupled feedback circuit between the amygdala and the cingulate, impli-
cated in the extinction of negative affect. Short allele carriers showed relative
uncoupling of this circuit and the magnitude of coupling inversely predicted almost
30% of variation in temperamental anxiety. They also show increased amygdala
activation to fearful stimuli (Bertolino et al., 2005; Hariri et al., 2002). Thus, this
gene seems to increase the affected individual’s brain’s sensitivity to negative affect
and anxiety (Gross and Hen, 2004). What other factors, then, may further predispose
the individual for a major depression?

Caspi et al. (2002, 2003) have shown, in an elegant longitudinal study, that stress
during the most recent 2 years in adulthood and maltreatment in childhood inter-
acted with the 5-HTTLPR status. Individuals with two copies of the short allele who
also had the stressors had greatest amount of depressive symptoms and suicidality
than heterozygous individuals, and those with only the long alleles had the least
amount of depression. The short allele carriers have been shown to have more neu-
roticism scores on Eysenck personality inventory, and those with both short allele
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Differences in processing of emotional stimuli between s allele carriers (darker arrows) and
homozygous l allele carriers (lighter arrows). Negative emotional stimuli are evaluated by the
amygdale after preliminary analysis in the ventral visual pathway (not shown). Carriers of the s
allele have markedly reduced positive functional coupling between the rostral anterior cingulate
(rACC) and the amygdala, which results in a net decrease in inhibitory feedback from the cau-
dal anterior cingulate (cACC), via connections between rACC and cACC (short upward arrows).
Brain volume was also substantially reduced in s allele carriers in the rACC and, to a lesser extent,
the cACC and amygdala. The consequence of these genotype-based alterations is an emotional
hyperresponsivity to negative affective stimuli in s allele carriers (large dark cloud) compared
with individuals lacking this allele (small light cloud), which may be related to an increased risk
of developing depression. As found in a previous study, functional coupling between the vmPFC
(light circle on left) and the amygdala was also increased in s allele carriers. (From Hamann, 2005,
reprinted with permission)

and high neuroticism were at higher risk of developing lifetime depression (Munaro
et al., 2005).

Studies in monkeys have shown that the anxiety-enhancing effect of the short
allele is mitigated with good mothering in infancy (Barr et al., 2004; Suomi, 2003,
2005).

5-HTTLPR may also determine response to drugs. Depressed individuals with
the short allele were found to respond better to antidepressants that are both sero-
tonergic and noradrenergic (i.e., mirtazapine) rather than serotonin-specific reuptake
blockers. On the other hand, individuals with the long allele may have more side
effects with exactly those drugs that are more effective for those with the short allele
(Murphy et al., 2004). Diet deficient in the serotonin precursor, tryptophan, has been
shown to induce depression in healthy women with the 5-HTTLPR s/s regardless of
family history of depression, while those l/l were resistant to depression regardless
of family history of depression. Those with l/s without family history of depression
were intermediate between l/l and s/s in depressive mood with tryptophan depletion,
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while l/s with family history of depression showed depressive response like the s/s
(Neumeister, 2003; Neumeister et al., 2006, 2002, 2004a, b).

Thus, 5-HTTLPR short allele, in conjunction with childhood stress, confers
an individual with the trait to respond to later stress with increased anxiety and
neuroticism, which, in turn, predisposes the individual for later major depression,
suicidality, and psychophysiologic disorders. Other gene–environment interactions
predisposing to trait and disorder have been reported, including type 4 dopamine
receptor gene (D4DR) and novelty seeking and ADHD (Ebstein et al., 1997;
Keltikangas-Jarvinen et al., 2003), monoamine oxidase A (MAOA) and antisocial
personality (Caspi et al., 2002; Craig, 2005), and dopamine transporter gene (DAT1)
and ADHD (Brookes et al., 2006). The Val66Met allele of the brain-derived neu-
rotrophic factor (BDNF) gene causes reduced dendritic branching in hippocampus,
impaired contextual fear conditioning, and increased anxiety that is less sensitive
to antidepressant treatment. There are alleles of the glucocorticoid receptor gene
found in the normal population, which confer a higher sensitivity to glucocorticoids
for both negative feedback and insulin reponsiveness or glucocorticoid resistance
and an association with an increased likelihood of depression in several alleles and
increased response to antidepressants in one of them (McEwen, 2007).

FKBP5 polymorphism (a glucocorticoid receptor-regulating gene) has also been
shown to interact with childhood abuse in increasing the risk of PTSD in an urban
general hospital population (Binder et al., 2008).

1.4 Emerging Model of Mental Illness: Gene × Meme
Interaction

It seems clear, then, that modern model of psychiatric and medical illness must be
based on gene × environment interaction. This model posits that the “vulnerability
gene” has evolutionarily adaptive function as evidenced by its very conservation.
It holds that there are critical interactions between the genotype and early environ-
ment in forming a personality trait which may in turn be adaptive or maladaptive at
the individual level, e.g., anxiety-prone, exploratory, attention fluctuating, hypervig-
ilant, etc. Kandel showed how environment (and learning) modifies gene expression
(Kandel, 1979, 1998).

Recent and current stress may play the role of tipping the balance from a trait to
a syndrome that has a course of its own.

How do environment and stress affect the genes exactly? To be precise, except in
a few extreme cases of physical stress, environment and stress affect human beings
only when they are perceived. As we have seen, the serotonin transporter promoter
gene polymorphism may affect how the same stimulus may be perceived – as threat-
ening or non-threatening – and may in turn result in activation or deactivation of
genes. The fact that a recent meta-analysis failed to show a significant interaction
between the serotonin transporter promoter polymorphism (5-HTTLPR) and stress
in the risk of depression (Risch et al., 2009) highlights that the interaction is not a
simple gene × stress, but rather mediated by the individual traits and percepts.
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When a sensation from a sensory organ reaches the brain, it is processed against
existing templates formed by both genetic predisposition and memory, the output
of this process constitutes perception. The templates and the percept are memes as
we will discuss in the next chapter. In sum, environment affects and interacts with
genes through memes in the course of development, and mental health and mental
illness are the outcomes of this interaction.
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